The lidar instrument citation is: K., B. and K., N. (2021) A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere. Atmospheric Measurement Techniques, 14 (2), Seiten 1715-1732. Copernicus Publications. doi: 10.5194/amt-14-1715-2021. ISSN 1867-1381.
2024
- Gupta et al., Estimates of Southern Hemispheric Gravity Wave Momentum Fluxes Across Observations, Reanalyses, and Kilometer-scale Numerical Weather Prediction Model, https://journals.ametsoc.org/view/journals/atsc/aop/JAS-D-23-0095.1/JAS-D-23-0095.1.xml
- B., M. and D., A. Observing Gravity Waves Generated by Moving Sources With Ground-Based Rayleigh Lidars, JGR, 2024, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JD040156
2023
- David C. Fritts, Gerd Baumgarten, P.-Dominique Pautet, James H. Hecht, Bifford P., Williams, N. K., B. K., C. Bjorn Kjellstrand, Ling Wang, Michael J. Taylor, and Amber D. Miller, Kelvin Helmholtz Instability “Tube” & “Knot” Dynamics, Part I: Expanding Observational Evidence of Occurrence and Environmental Influences", JAS
2022
- G., S. and Polichtchouk, Inna and D., A. and R., R. and K., B. and K., N. and Rapp, Markus and Sandu, Irina (2022) Gravity-Wave-Driven Seasonal Variability of Temperature Differences Between ECMWF IFS and Rayleigh Lidar Measurements in the Lee of the Southern Andes. Journal of Geophysical Research: Atmospheres (127), Seiten 1-19. Wiley. doi: 10.1029/2021JD036270. ISSN 2169-897X.
- Ohneiser, Kevin and Ansmann, Albert and K., B. and Chudnovsky, Alexandra and Barja, Boris and Knopf, D. A. and K., N. and Baars, Holger and Seifert, Patric and Villanueva, Diego and Jimenez, Cristofer and Radenz, Martin and Engelmann, Ronny and Veselovskii, Igor and Zamorano, Félix (2022) Australian wildfire smoke in the stratosphere: the decay phase in 2020/2021 and impact on ozone depletion Atmospheric Chemistry and Physics (ACP), 22 (11), Seiten 7417-7442. Copernicus Publications. doi: 10.5194/acp-22-7417-2022. ISSN 1680-7316.
- R., R. (2022) Characterization of Gravity Waves in the Lee of the Southern Andes utilizing an Autonomous Rayleigh Lidar System. Dissertation, Ludwig-Maximilians-Universität.
2021
- R., R. and K., B. and K., N. and D., A. and Rapp, Markus and Hormaechea, Jose Luis (2021) High-Cadence Lidar Observations of Middle Atmospheric Temperature and Gravity Waves at the Southern Andes Hot Spot. Journal of Geophysical Research, Seiten 1-31. Wiley. doi: 10.1029/2021JD034683. ISSN 0148-0227.
- Sarkar, Emranul and Kozlovsky, Alexander and Ulich, Thomas and Virtanen, Ilkka and Lester, Mark and K., B. (2021) Improved method of estimating temperatures at meteor peak heights. Atmospheric Measurement Techniques, 14 (6), Seiten 4157-4169. Copernicus Publications. doi: 10.5194/amt-14-4157-2021. ISSN 1867-1381.
- Banyard, Tim P. and Wright, Corwin J. and Hindley, Neil P. and Halloran, Gemma and Krisch, Isabell and K., B. and Hoffmann, Lars (2021) Atmospheric Gravity Waves in Aeolus Wind Lidar Observations. Geophysical Research Letters, 48 (10), e2021GL092756. Wiley. doi: 10.1029/2021GL092756. ISSN 0094-8276.
- Pautet, P.-D. and Taylor, M. and Fritts, David C. and Janches, Diego and K., N. and D., A. and Hormaechea, J. L. (2021) Mesospheric Mountain Wave Activity in the Lee of the Southern Andes. Journal of Geophysical Research: Atmospheres, 126 (7), e2020JD033268. Wiley. doi: 10.1029/2020JD033268. ISSN 0148-0227.
- K., B. and K., N. (2021) A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere. Atmospheric Measurement Techniques, 14 (2), Seiten 1715-1732. Copernicus Publications. doi: 10.5194/amt-14-1715-2021. ISSN 1867-1381.
2020
- K., N. and K., B. and D., A. and Rapp, Markus and Hormaechea, J. L. and de la Torre, Alejandro (2020) Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina. Scientific Reports (14529), Seiten 1-10. Nature Publishing Group. DOI: 10.1038/s41598-020-71443-7 ISSN 2045-2322
- Alexander, Peter and de la Torre, Alejandro and K., N. and K., B. and Salvador, J. and Llamedo, P. and Hierro, R. and Hormaechea, J. L. (2020) Temperature profiles from two close lidars and a satellite to infer the structure of a dominant gravity wave. Earth and Space Science. American Geophysical Union (AGU). DOI: 10.1029/2020EA001074 ISSN 2333-5084.
2019
- Hupe, Patrick and Ceranna, Lars and Pilger, Christoph and de Carlo, Marine and Pichon, Alexis Le and K., B. and Rapp, Markus (2019) Assessing middle atmosphere weather models using infrasoand detections from microbaroms. Geophysical Journal International, Seiten 1761-1767. Oxford University Press. DOI: 10.1093/gji/ggy520 ISSN 0956-540X
- Ehard, Benedikt and Malardel, Sylvie and D., A. and K., B. and K., N. and Wedi, Nils (2018) Comparing ECMWF high resolution analyses to lidar temperature measurements in the middle atmosphere. Quarterly Journal of the Royal Meteorological Society, 114, Seiten 633-640. Wiley. DOI: 10.1002/ q j. 3206 ISSN 0035-9009
- R., R. and K., B. and K., N. and Rapp, Markus and Pautet, Pierre-Dominique and Taylor, Michael J. and Kozlovsky, Alexander and Lester, Mark and Kivi, Rigel (2019) Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data. Atmospheric Measurement Techniques (AMT), 12 (11), Seiten 5997-6015. Copernicus Publications. DOI: 10.5194/amt-12-5997-2019 ISSN 1867-1381
2018
- K., N. and K., B. and Wilms, Henrike and Rapp, Markus and Stober, Gunter and Jacobi, Christoph (2018) Mesospheric temperature during the extreme mid-latitude noctilucent cloud event on 18/19 July 2016. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 123 (24), Seiten 13775-13789. Wiley. DOI: 10.1029/2018JD029717 ISSN 2169-897X
- Blanc, Elisabeth and Pol, Katy and Le Pichon, Alexis and Hauchecorne, Alain and Keckhut, Philippe and Baumgarten, G. and Hildebrand, Jens and Höffner, Josef and Stober, Gunter and Hibbins, Robert and Espy, Patrick and Rapp, Markus and K., B. and Cerrana, Lars and Hupe, Patrick and Hagen, Jonas and Rüfenacht, Rolf and Kämpfer, Niklaus and Smets, Pieter (2018) Middle Atmosphere Variability and Model Uncertainties as Investigated in the Framework of the ARISE Project. In: Infrasoand Monitoring for Atmospheric Studies Springer, Cham. Seiten 845-887. ISBN 978-3-319-75138-2. Volltext nicht online.
- Rapp, Markus and D., A. and K., B. (2018) An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data. Atmospheric Measurement Techniques, 11 (2), Seiten 1031-1048. Copernicus Publications. DOI: 10.5194/amt-11-1031-2018 ISSN 1867-1381
2017
- D., A. and G., S. and K., B. (2017) On the Interpretation of Gravity Wave Measurements by Ground-Based Lidars. Atmosphere, Seiten 1-22. Multidisciplinary Digital Publishing Institute (MDPI). DOI: 10.3390/atmos8030049 ISSN 2073-4433
- K., N. and K., B. and Ehard, Benedikt and G., S. and D., A. and Rapp, Markus and Kivi, Rigel and Kozlovsky, Alexander and Lester, M. and Liley, Ben (2017) Observational indications of downward-propagating gravity waves in middle atmosphere lidar data. Journal of Atmospheric and Solar-Terrestrial Physics, 162, Seiten 16-27. Elsevier. DOI: 10.1016/j.jastp.2017.03.003 ISSN 1364-6826